Puede afirmarse que el pensamiento matemático fue producto, en gran parte, de dos aptitudes del espíritu humano: la percepción de la pluralidad, que casi pertenece al campo de la sensibilidad, y el poder de establecer correspondencias, emparejamientos, que, sin duda, es propio de la inteligencia. De esta manera, los primeros balbuceos matemáticos, culminaron en el arte de contar y, después, en la aritmética.
Los textos matemáticos más antiguos que se poseen proceden de Mesopotamia, son textos cuneiformes que tienen más de 5.000 años de antigüedad. Los Mesopotámicos inventaron un notable sistema de numeración y los métodos fundamentales del álgebra, considerada como el arte de resolver ecuaciones. Se conoce la extensión de su saber aunque se ignora todo de sus métodos. Al parecer sus conocimientos geométricos fueron muy rudimentarios. Más simples todavía fueron los conocimientos aritméticos y geométricos de los egipcios, pese a las afirmaciones de los antiguos griegos y sobre todo si se comparan con los de los Babilonios.
El principal texto matemático egipcio encontrado es el Papiro del Rhind que fue escrito bajo el reinado del rey hicso Ekenenre Apopi, hacia el 1600 a. de J.C. De él se deduce que su sistema de numeración era un sistema decimal por yuxtaposición y no parece que supieran contar más allá de un millón. Sabían resolver por tanteo ecuaciones simples de primer grado de la forma "ax=b". En cuanto a la geometría, los problemas ofrecidos en este papiro se refieren a mediciones de superficies o volúmenes y son netamente concretos y vinculados a necesidades prácticas corrientes. En todos los casos se trata de recetas utilitarias y jamás se percibe en ellos un interés teórico.
Los fenicios en el primer milenio antes de J.C. crearon un sistema de numeración menos engorroso que el sistema egipcio y que luego sería continuado por los griegos en el siglo III a. de J.C.: el sistema de letras numerales o numerables.
Los chinos poseían un libro clásico de cálculo compuesto entre los siglos VI y I a. de J.C. en el cual se utiliza un sistema de numeración que comprende nueve signos diferentes para designar los números 1,2,3,4,5,6,7,8,9 y cuatro signos distintos para 10, 100, 1000 y 10000, más un signo para el cero. Este libro comprende también un saber geométrico elemental.
Por último en la India, la matemática, la religión y la filosofía se confunden. El saber geométrico hindú está resumido en el Sutra de Apastamba (un sabio que vivió posiblemente en el siglo V a. de J.C.), este tratado constituye una guía práctica del arquitecto.
Benoît. Mandelbrot
Primeras nociones de las matemáticas en la humanidad:20 de noviembre de 1924) es un matemático conocido por sus trabajos sobre los fractales. Es el principal responsable del auge de este dominio de las matemáticas desde el inicio de los años ochenta, y del interés creciente del público. En efecto supo utilizar la herramienta que se estaba popularizando en ésta época - el ordenador - para trazar los más conocidos ejemplos de geometría fractal: el conjunto de Mandelbrot por supuesto, así como los conjuntos de Julia descubiertos por Gaston Julia quien inventó las matémáticas de los fractales, desarrollados luego por Mandelbrot.
Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.
Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100...), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas... de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios utilizaban sumas de fracciones unidad (Œ), junto con la fracción ’, para expresar todas las fracciones. Por ejemplo, " era la suma de las fracciones ‚ y ~. Utilizando este sistema, los egipcios fueron capaces de resolver problemas aritméticos con fracciones, así como problemas algebraicos elementales.
En geometría encontraron las reglas correctas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, por supuesto, pirámides. Para calcular el área de un círculo, los egipcios utilizaban un cuadrado de lado del diámetro del círculo, valor muy cercano al que se obtiene utilizando la constante pi (3,14).
Benoît Mandelbrot